UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC10/Revised & Old/2023

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC10-MATHEMATICS

METRIC SPACE AND COMPLEX THEORY

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Show that the function $f: X \to Y$ is uniformly continuous, where X is discrete metric space and Y is any metric space.
 - (b) Give an example with proper justification of a set which is bounded but not totally bounded.
 - (c) Let X be a set and $|X| \ge 2$ with the discrete metric. Show that X is not connected.
 - (d) If f be an analytic function on a region $G (\subset \mathbb{C})$ such that Im f = 0, then show that f is constant.
 - (e) Show that every totally bounded metric space is separable.
 - (f) Find the Laurent series expansion of the function $\frac{7z-2}{z(z-2)(z+1)}$ in the domains $1\frac{1}{2}+1\frac{1}{2}$ |z|>2 and 1<|z|<2 respectively.

GROUP-B

1

Answer any <i>four</i> questions from the following						
Show that the map $f:[0,1] \to [0,1]$ given by $f(x) = x - \frac{x^2}{2}$, is a weak	6					
contraction map but not contraction map. Also find its fixed points if exists.						
Establish Cauchy-Riemann equations in the polar form for a function $f(z)$.	6					
For any non-empty A of a metric space (X, d) , show that the function $f: X \to \mathbb{R}$ given by $f(x) = d(x, A)$; $x \in X$, is uniformly continuous.	6					
State and prove the sufficient conditions for differentiability of a complex valued function $f(z)$ of a complex variable.	6					

2.

3.

4.

5.

 $3 \times 4 = 12$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC10/Revised & Old/2023

6. Let f(z) = u(x, y) + iv(x, y) be an analytic function in a region G. Verify whether 2+2+2 the functions $\overline{f(z)}$, $f(\overline{z})$, $\overline{f(\overline{z})}$ are analytic or not in G.

7. (a) Let
$$f(z) = \frac{1}{z^2}$$
 and Γ be the straight line joining the points *i* and $3 + i$. Show that

$$\left| \int_{\Gamma} f(z) dz \right| \le 3.$$
(b) Evaluate $\int_{|z|=2} \frac{1}{(z^2+1)} dz$.

GROUP-C

Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
--	--------------------

8

4

5

8. (a)	Prove	that	union	of two	compact	subsets	of the	metric	space	(X, a)	d) is	also	6
	compa	ct.											
(b)	Let C	(X, d)	be a	metric	space wi	ith r _o e	X Le	t $f \cdot X$	$\rightarrow \mathbb{R}$	he d	lefined	l bv	6

- (b) Let (X, d) be a metric space with $x_0 \in X$. Let $f: X \to \mathbb{R}$ be defined by $f(x) = d(x, x_0)$. Prove that f is uniformly continuous on X.
- 9. (a) State and prove Cauchy-Goursat theorem.

(b) Find the value of
$$\int_{\Gamma} \frac{dz}{z-a}$$
, if

(i) *a* lies inside Γ , and

(ii) *a* lies outside Γ .

10.(a) If f(z) is analytic within and on a simple closed rectifiable curve Γ and z_0 is any 6 point inside Γ , then prove that $f'(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^2} dz$.

- (b) Expand $f(z) = \cos z$ in Taylor Series about $z = \pi/4$ and determine the region of 6 convergence of the series.
- 11.(a) Suppose that f(z) = u(x, y) + iv(x, y) be an entire function such that $u_y v_x = -2$ for all $z(=x+iy) \in \mathbb{C}$. Verify the function f(z) is constant or not.
 - (b) Prove that every polynomial of degree n has exactly n (not necessarily distinct)3 zeros.

(c) Evaluate
$$\int_{\Gamma} \frac{\log z}{(z-1)^3} dz$$
, where Γ is the circle $|z-2|=3/2$. 4

_×__